BALANCEAMENTO POR OXI-REDUÇÃO

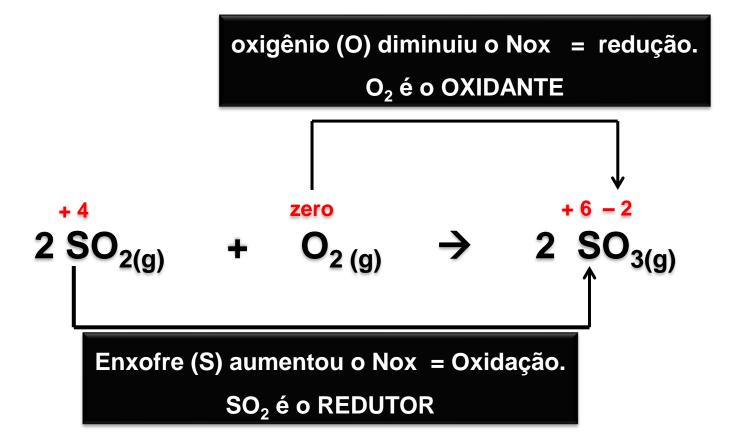
PROF. IURY CÂNDIDO

OXIREDUÇÃO

Um dos produtos liberados pela indústria

é o dióxido de enxofre ($SO_{2(g)}$) que em contato com o oxigênio ($O_{2(g)}$) da atmosfera produz ($SO_{3(g)}$) de acordo com a reação:

 $2 SO_{2(g)} + O_{2(g)} \rightarrow 2 SO_{3(g)}$


$$2 SO_{2(g)} + O_{2(g)} \rightarrow 2 SO_{3(g)}$$

Podemos observar que nesta reação ...

- > Ocorre transferência de elétrons entre duas substâncias.
- > O elemento que ganhou elétrons teve seu número de oxidação diminuído.
- > O elemento que perdeu elétrons teve seu número de oxidação aumentado.
- > Que o total de elétrons cedidos é igual ao total de elétrons recebido.

A substância que contém o elemento que ...

- > ... perdeu elétrons, aumentou o Nox, é o REDUTOR.
- > ... ganhou elétrons, diminuiu o Nox, é o OXIDANTE.

$2 SO_{2(g)} + O_{2(g)} \rightarrow 2 SO_{3(g)}$

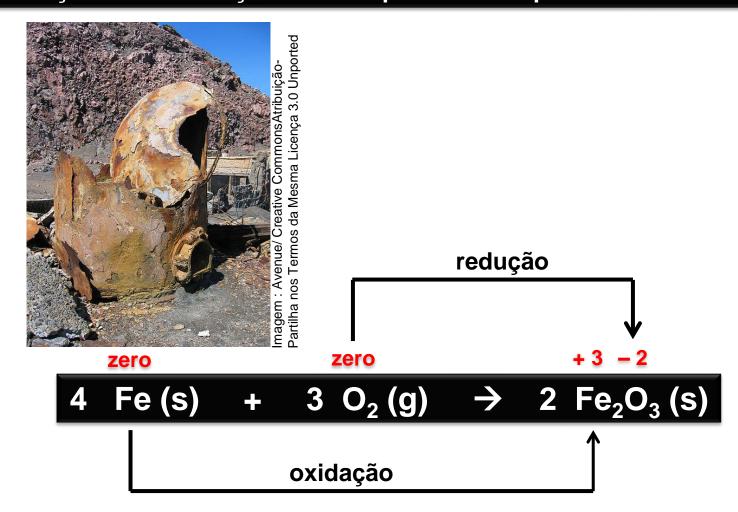

> Este tipo de reação é classificada como reação de OXIRREDUÇÃO.

Imagem: Brocken Inaglory/Creative Commons Attribution-Share Alike 3.0 Unported

EXEMPLOS DO COTIDIANO

Uma reação de oxirredução muito importante é a que ocorre com o FERRO

EXEMPLOS DO COTIDIANO

A pilha eletroquímica tem seu funcionamento baseado em uma reação de oxidação e redução

Imagem : Cyberpunk/Creative Commons - CC0 1.0 Universal (CC0 1.0) Dedicação ao Domínio Público

RESUMINDO

Em todas as situações mostradas teremos uma

EQUAÇÃO QUÍMICA

de oxidação e redução

representando o fenômeno

$$2 SO_{2(g)} + O_{2(g)} \rightarrow 2 SO_{3(g)}$$

4 Fe (s) + 3
$$O_2$$
 (g) \rightarrow 2 Fe₂ O_3 (s)

NOTE QUE:

Neste tipo de reação teremos:

- O agente redutor cedendo elétrons.
- > O agente oxidante recebendo elétrons.
- > O total de elétrons CEDIDOS é sempre igual ao total RECEBIDO.

Estas características podem ser usadas para balancear os Coeficientes Estequiométricos de uma equação de oxirredução

BALANCEAMENTO POR OXI-REDUÇÃO

Como chegaremos a estes coeficientes estequiométricos?

REDUÇÃO N:
$$\Delta = (+5) - (+2) = 3$$
 $0 +5 +5 +5 +2$

3 P + 5 HNO₃ + 2 H₂O \longrightarrow 3 H₃PO₄ + 5 NO

OXIDAÇÃO P: $\Delta = (+5) - 0 = 5$

Como o total de elétrons CEDIDOS e RECEBIDOS devem ser iguais, devemos inverter estas variações usando-as como coeficientes.

Prosseguimos o balanceamento por tentativas.

DICAS:

Para facilitar o balanceamento podemos seguir algumas regras:

- a) Descobrir todos os elementos que sofreram oxidação e redução, isto é, é, mudaram o número de oxidação
- b) Calculemos agora as variações de Nox desses elementos, que chamaremos de (delta). Criamos então dois ramais; o de oxidação e o de redução
- c) Multiplicamos a variação do Nox do elemento, na substância escolhida, pela sua atomicidade. Teremos, neste caso, a variação total do Nox.

Cl₂ Ramal de oxidação:
$$\Delta t = 1 \times 2 = 2$$
 \rightarrow 5 Cl₂ \rightarrow 5 Cl₂ \rightarrow 2 KMnO₄ Ramal de redução: $\Delta t = 5 \times 1 = 5$ \rightarrow 2 KMnO₄

d) Dar a inversão dos resultados para determinar os coeficientes.

Primeiro

 Determinar o Nox de todas as espécies envolvidas, bem como a sua variação de Nox.

Próximo passo:

 Multiplicar a variação do Nox de cada espécie pelo maior coeficiente de cada espécie.

Redução: $KMnO_a$: $\Delta = 5 \cdot 1 = 5$

Oxidação: $C\ell_2$: $\Delta = 1 \cdot 2 = 2$

3º passo

 O Δ da redução é o coeficiente da oxidação, e vice-versa, garantindo a igualdade entre o número de elétrons doados e o de elétrons recebidos.

$$\Delta_{\text{redução}} = 5 \rightarrow 5 \text{ C} \ell_2$$

$$\Delta_{\text{oxidação}} = 2 \rightarrow 2 \text{ KMnO}_4$$

Por fim...

 Os outros coeficientes são ajustados de modo a igualar o número de átomos dos reagentes e o dos produtos.

2 KMnO₄ + 16 HC
$$\ell$$
 \rightarrow 2 KC ℓ + 2 MnC ℓ ₂ + 5 C ℓ ₂ + 8 H₂O

COTIDIANO: EXEMPLOS

Imagens: (A) Andrew c/GNU Free Documentation License / (B) Warburg/Creative Commons Attribution-Share Alike 3.0 Unported

A cebola, por conter derivados de enxofre, pode escurecer talheres de prata.

Este fenômeno pode ser representado pela equação:

 $4 \text{ Ag}_{(s)} + 2 \text{ H}_2 \text{S}_{(g)} + \text{O}_{2(g)} \rightarrow 2 \text{ Ag}_2 \text{S}_{(s)} + 2 \text{ H}_2 \text{O}_{(v)}$

EXPLICANDO O BALANCEAMENTO

$$4 Ag_{(s)} + 2 H_2S_{(g)} + O_{2(g)} \rightarrow 2 Ag_2S_{(s)} + 2 H_2O_{(v)}$$

Como chegaremos a estes coeficientes estequiométricos?

Dar a inversão dos resultados para determinar os coeficientes.

Ramal de redução: $\Delta t = 2 \times 2 = 4$ ou 2

 O_2

NOTE QUE:

O cálculo da variação total dos elétrons

CEDIDOS e RECEBIDOS

devem ser calculados com a substância

que possui O elemento QUE tenha

número de oxidação exclusivo e com maior atomicidade

EXEMPLO

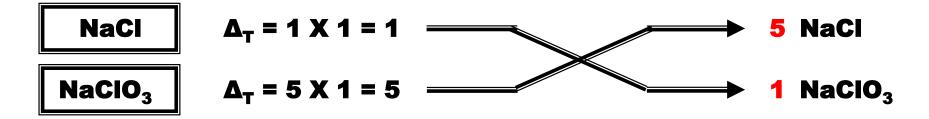
 Unirg-TO (adaptado) – Analise a equação química a seguir.

$$\mathbf{a} \, \mathrm{H_2C_2O_4} + \mathbf{b} \, \mathrm{KMnO_4} \rightarrow \mathbf{c} \, \mathrm{CO_2} + \mathbf{d} \, \mathrm{MnO} + \mathbf{e} \, \mathrm{K_2O} + \mathbf{f} \, \mathrm{H_2O}$$

Balanceie devidamente a equação, dê a soma de todos os coeficientes estequiométricos e apresente os agentes redutor e oxidante.

AUTO OXIRREDUÇÃO: CASO ESPECIAL

Encontraremos reações de oxirredução em o mesmo elemento sofre


OXIDAÇÃO e REDUÇÃO

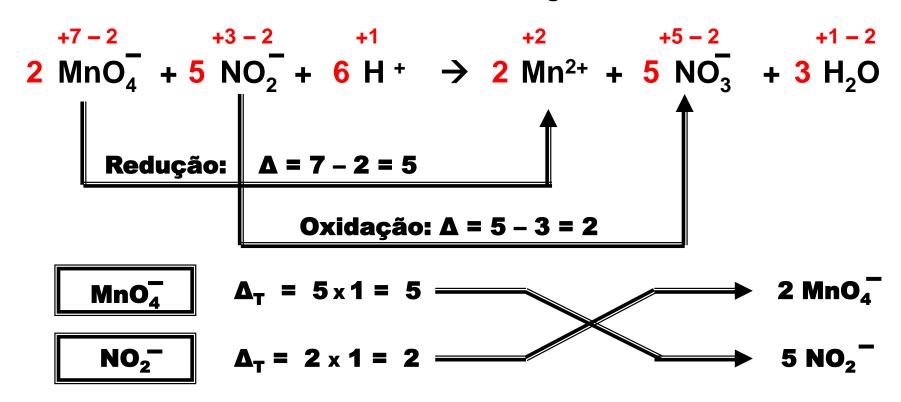
É um caso especial denominado de

AUTO OXIRREDUÇÃO

0 +1-2+1 +1 -1 +1+5-2 +1-2
3
$$Cl_2$$
 + 6 NaOH \rightarrow 5 NaCl + 1 NaClO₃ + 3 H_2O
Redução: $\Delta = 0 - (-1) = 1$
Oxidação: $\Delta = 5 - 0 = 5$

Neste caso calculamos a variação total no 2º membro da equação

AUTO OXIRREDUÇÃO: CASO ESPECIAL


- 11. FGV-RJ As fosfinas, PH₃, são precursoras de compostos empregados na indústria petroquímica, de mineração e hidrometalurgia. Sua obtenção é feita a partir do fósforo elementar, em meio ácido, sob elevada pressão, e a reação se processa de acordo com P₄ + H₂O → PH₃ + H₃PO₄. A soma dos menores valores inteiros dos coeficientes estequiométricos dessa equação corretamente balanceada é igual a
 - a) 10
 - b) 11
 - c) 15
 - d) 22
 - e) 24

AUTO OXIRREDUÇÃO: CASO ESPECIAL

- 11. FGV-RJ As fosfinas, PH₃, são precursoras de compostos empregados na indústria petroquímica, de mineração e hidrometalurgia. Sua obtenção é feita a partir do fósforo elementar, em meio ácido, sob elevada pressão, e a reação se processa de acordo com P₄ + H₂O → PH₃ + H₃PO₄. A soma dos menores valores inteiros dos coeficientes estequiométricos dessa equação corretamente balanceada é igual a
 - a) 10
 - b) 11
 - c) 15
 - d) 22
 - e) 24

ÍONS: CASO ESPECIAL

Um caso especial é quando envolve ÍONS, pois deveremos, também, balancear as cargas dos íons

$$2 \text{ MnO}_{4}^{-} + 5 \text{ NO}_{2}^{-} + 6 \text{ H}^{+} \rightarrow 2 \text{ Mn}^{2+} + 5 \text{ NO}_{3}^{-} + 3 \text{ H}_{2}\text{O}$$

Verifique que as cargas elétricas estão equilibradas:

$$1^{\circ}$$
 membro: 2.(-1) + 5.(-1) + 6.(+1) = -1

$$2^{\circ}$$
 membro: 2.(+2) + 5.(-1) = -1

EXEMPLO 02

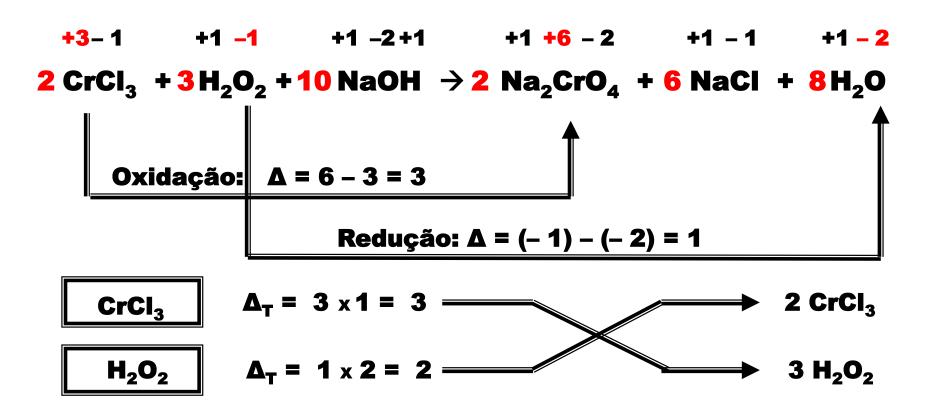
3. Acafe-SC C7-H24

Íons Fe²+ podem ser quantificados em uma reação de oxirredução com íons MnO₂ padronizados em meio ácido. Uma vez balanceada a equação química a seguir, a soma dos menores coeficientes estequiométricos inteiros dos reagentes será

$$MnO_{4(aq)}^{-} + Fe_{(aq)}^{2+} + H_{1aq)}^{+} \rightarrow Mn_{(aq)}^{2+} + H_{2}O_{(c)} + Fe_{(aq)}^{3+}$$

- a) 10
- b) 3
- c) 14
- d) 5
- e) 15

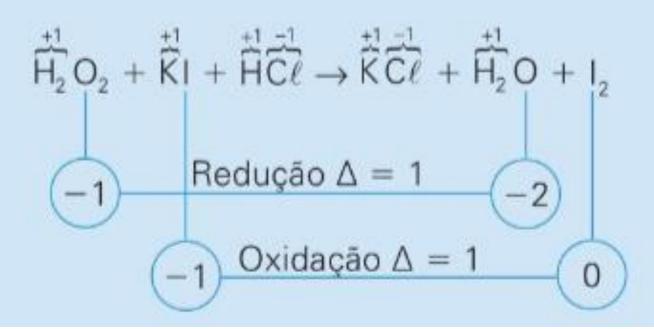
EXEMPLO 02


3. Acafe-SC C7-H24

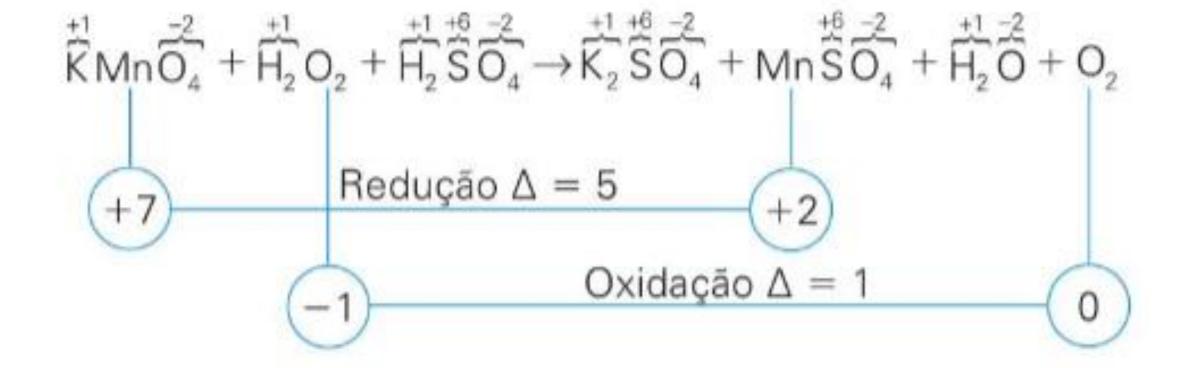
Íons Fe²+ podem ser quantificados em uma reação de oxirredução com íons MnO₁ padronizados em meio ácido. Uma vez balanceada a equação química a seguir, a soma dos menores coeficientes estequiométricos inteiros dos reagentes será

$$MnO_{4(aq)}^{-} + Fe_{(aq)}^{2+} + H_{1aq)}^{+} \rightarrow Mn_{(aq)}^{2+} + H_{2}O_{(c)} + Fe_{(aq)}^{3+}$$

- a) 10
- b) 3
- c) 14
- d) 5
- e) 15

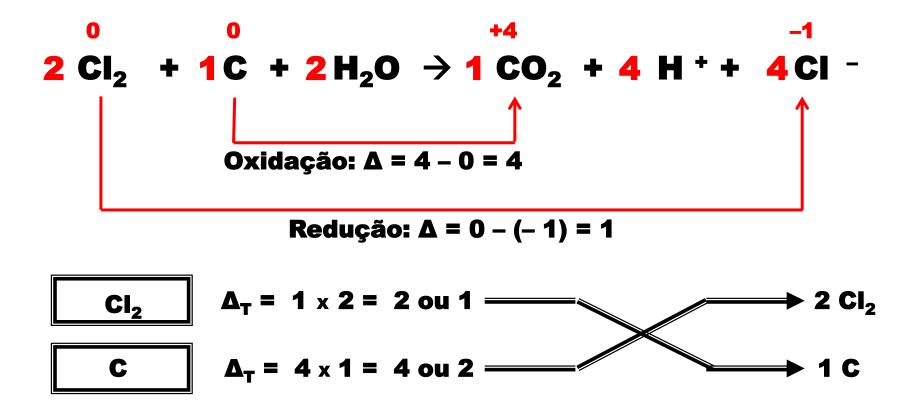

Existem outras reações que envolvem o peróxido de hidrogênio

Exemplo do peróxido


Exemplo

Balancear a equação a seguir.

Encontre o erro.


$$1 H_2O_2 + 2 KI + 2 HC\ell \rightarrow 2 KC\ell + 1 H_2O + 1 I_2$$

Uma outra aplicação das reações da
Oxirredução é nos filtros de carvão ativo.
Os filtros contendo carvão ativo
procuram eliminar o excesso de cloro na água tratada.
Pode ocorrer a reação:

$$2 Cl_2 + C + 2 H_2O \rightarrow CO_2 + 4 H^+ + 4 Cl^-$$

Vamos fazer o balanceamento desta equação?

$2 Cl_2 + C + 2 H_2 O \rightarrow CO_2 + 4 H^+ + 4 C/-$

Verifique que as cargas elétricas estão equilibradas:

1º membro: todas as substâncias são neutras

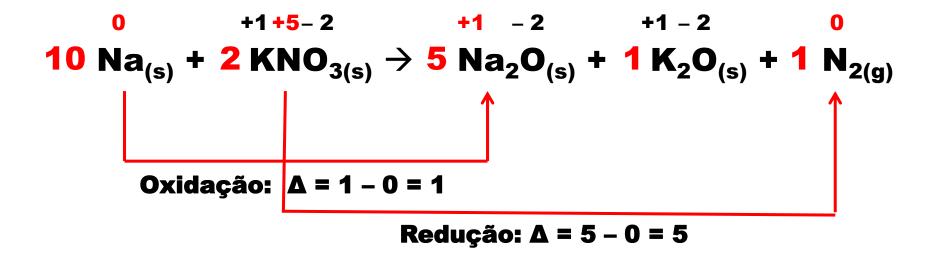
 2° membro: $4 \cdot (+1) + 4 \cdot (-1) = 0$

O sistema de segurança *airbag* usado em automóveis é acionado por um microprocessador em caso de acidente. Ocorre desencadeamento de reações liberando nitrogênio, que infla prontamente o saco plástico (*airbag*).

Considerando as reações:

$$NaN_{3(s)} \rightarrow Na_{(s)} + N_{2(g)}$$

$$\mathrm{Na_{(s)}}$$
 + $\mathrm{KNO_{3(s)}}$ \rightarrow $\mathrm{Na_2O_{(s)}}$ + $\mathrm{K_2O_{(s)}}$ + $\mathrm{N_{2(g)}}$

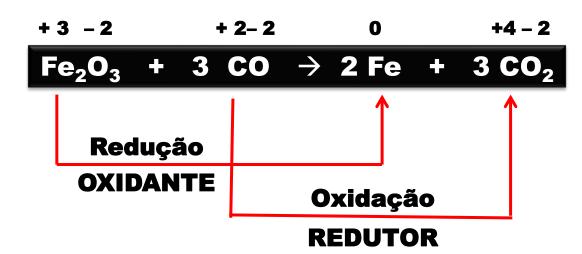

Vamos acertar os seus coeficientes estequiométricos

$$^{+1} - \frac{1}{3}$$
 0 0 0 2 NaN_{3(s)} \rightarrow 2 Na_(s) + 3 N_{2(g)}

Oxidação:
$$\Delta = 0 - (-1/3) = 1/3$$

Redução: $\Delta = 1 - 0 = 1$

$$N_2$$
 $\Delta_T = 1/3 \times 2 = 2/3 \text{ ou } 2$ \rightarrow 3 N_2 $\Delta_T = 1 \times 1 = 1 \text{ ou } 3$ \rightarrow 2 Na


02) (UVA – CE) Na obtenção do ferro metálico a partir da hematita, uma das reações que ocorre nos altos fornos é:

"Fe₂O₃ + 3 CO
$$\rightarrow$$
 2 Fe + 3 CO₂"

Pela equação, pode-se afirmar que o agente redutor e o número de oxidação do metal reagente são, respectivamente:

- b) CO e + 3.
- c) $Fe_2O_3 e + 3$.
- d) Fe e 2.
- e) Fe e zero.

