

QUÍMICA

2º SÉRIE Prof. lury Lista:

06

Data: 30 / 04 / 2020

Νo

Aluno (a):

01 - (Mackenzie SP)

O cicloexano (C_6H_{12}) é um hidrocarboneto líquido à temperatura ambiente, insolúvel em água, que pode ser obtido pela redução com hidrogênio, na presença de um catalisador e pressão adequados, a partir do benzeno, apresentando valor de entalpia-padrão de formação igual a -156 kJ.mol^{-1} . Sabendo-se que as entalpias padrão de formação, da água líquida e do dióxido de carbono gasoso são, respectivamente, -286 kJ.mol^{-1} e -394 kJ.mol^{-1} , pode-se afirmar que a entalpia-padrão de combustão do cicloexano é de

- a) -524 kJ.mol^{-1} .
- b) 836 kJ.mol⁻¹.
- $c) 3924 \text{ kJ.mol}^{-1}$.
- $d) 4236 \text{ kJ.mol}^{-1}$
- e) $-6000 \text{ kJ.mol}^{-1}$.

02 - (UEPA)

O hidróxido de magnésio, base do medicamento vendido comercialmente como Leite de Magnésia, pode ser usado como antiácido e laxante. Dadas as reações abaixo:

- I. $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$ $\Delta H = -1.203,6 \text{ kJ}$
- II. $Mg(OH)_2(s) \rightarrow MgO(s) + H_2O$ $\Delta H = +37,1 \text{ kJ}$
- III. $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$ $\Delta H = -571.7 \text{ kJ}$

Então, o valor da entalpia de formação do hidróxido de magnésio, de acordo com a reação: $Mg(s) + H_2(g) + O_2(g) \rightarrow Mg(OH)_2(s)$, é:

- a) -1.849,5 kJ
- b) +1.849,5 kJ
- c) -1.738,2 kJ
- d) -924,75 kJ
- e) +924,75 kJ

03 - (UEPG PR)

Com base nas reações de combustão (não balanceadas) dos combustíveis listados abaixo, assinale o que for corre-

Dados:

H = 1 g/mol

C = 12 g/mol

O = 16 g/mol

	ΔH ^o _c (kJ/mol)
$CH_{4(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(\ell)}$	-890
$C_2H_5OH_{(\ell)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(\ell)}$	-1370
$CH_3OH_{(\ell)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(\ell)}$	-726
$H_{2(g)} + O_{2(g)} \rightarrow H_2O_{(\ell)}$	-286

- 01. O gás hidrogênio (H₂) é o combustível relacionado que libera mais energia por grama.
- 02. A reação que consome mais gás oxigênio (O₂) é a combustão do etanol (C₂H₅OH).
- 04. As reações de combustão apresentadas são reações endotérmicas.
- 08. O metano (CH₄) libera mais energia por grama que o metanol (CH₃OH).

04 - (UERN) Também denominado anidrido sulfúrico ou óxido sulfúrico, o trióxido de enxofre é um composto inorgânico, representado pela fórmula química SO₃, é gasoso, incolor, irritante, reage violentamente com a água, é instável e corrosivo. O trióxido de enxofre é obtido por meio da oxidação do dióxido de enxofre, tendo o pentóxido de vanádio como catalisador da reação realizada pelo método de contato. Observe:

$$SO_2(g) + O_2(g) \xrightarrow{V_2O_5} SO_3(g)$$

Ressalta-se que as entalpias de formação, em kJ/mol, do SO_2 e SO_3 são, respectivamente, -297 e -420. A entalpia de combustão de 12,8 gramas, em kJ, do dióxido de enxofre é igual a

- a) -123.
- b) +123.
- c) -24,6.
- d) +24,6.

05 - (UDESC SC)

A indústria siderúrgica utiliza-se da redução de minério de ferro para obter o ferro fundido, que é empregado na obtenção de aço. A reação de obtenção do ferro fundido é representada pela reação:

$$Fe_2O_3 + 3CO \rightarrow 2 Fe + 3CO_2$$

Dados: Entalpia de formação (ΔH°_{f}) a 25°C, kJ/mol.

	·- ^			00
	Fe ₂ O ₃	Fe	CO	CO ₂
ΔH° _f , kJ/mol.	-824,2	0	-110,5	-393,5

A entalpia de reação (ΔH°_r) a 25°C é:

- a) 24,8 kJ/mol.
- b) -24,8 kJ/mol.
- c) 541,2 kJ/mol.
- d) -541,2 kJ/mol.
- e) 1328,2 kJ/mol.